

Using SAS® system in very limited time/resource environment

Milorad Stojanovic, RTI International, RTP, North Carolina

Abstract
The paper will describe and comment on the use of
the SAS system with significant constraints from two
sides. First, a relatively short time was available for
processing a relatively large amount of data.
Second, the hardware was moderate both in speed
and in capacity. The program used moderately
complex macros, data _NULL_ steps, POINT data
set option, and array processing. SAS data steps
and Proc Sort were used for generating reports only.
Processing in memory allowed the data to be
handled quickly in comparison with the usual method
of sorting and merging.

Introduction
The project had over 2.8 million of potentially
affected records. The time for processing these
records was restricted to 2 hours (real time) because
other phases of the project had to be done and
analysis data sets had to be generated for the client.
My hardware was a PC with 233 MHz processor, 64
MB of RAM and 3GB hard drive. Windows 95 and
SAS 6.12 were available on the PC. Data files
resided on the server side behind a firewall. The
project had 24 data files collected at 4 sites
throughout the US. Data were collected once per
week. Files were organized as fixed format ASCII
files.

During the data collection phase it was found that
some of the files contained records with inconsistent
data values. In some cases (less than 1.5% of all
cases) variables VAR6 or VAR7 had a value greater
than VAR8. The client requested that all such
records be removed from the affected data files. Of
24 data files, 14 files were affected. The problem
was that just two of 14 files had those variables and
all other files were linked via external keys. Also, the
request was to preserve all input text files and output
text files (after removal of affected records) in the
same order and with the exactly same layout as they
appeared at the input.

Four ways of solving the problem were
considered
1. Transforming all affected text files to SAS data
sets, sorting them, merging (removed inconsistent
observations), and sorting them back to the initial
sort order, and exporting such SAS data sets to text
files.

2. Using SQL to do the job. It required using DTS
(Data Transforming Services) to transfer data files or
BCP (Bulk Copy Program) if you like to work from

the command line. At that time the author did not
have enough knowledge to achieve all those steps
and timely delivery of first time data files for the client
was critical.

3. Generate formatted values for the three key
variables from the data set of selected cases and
used in processing all 14 files. This idea was
probably the best one, but because of lack of time
for design and development idea, it was considered
briefly and unfortunately was abandoned.

4. The fourth idea was to use the SAS system but to
deal with text files as much as possible. Usage of the
Data _NULL_ statement with Input and Output ASCII
files was considered and, with the addition of a few
performance improvements was accepted.

Steps in solution:

• FILE015 and FILE013 files were converted
to SAS data sets.

• Combining FILE015 and FILE013 data sets
produced DELETIND data set with the all
cases with inconsistent data [(VAR6 >
VAR8 +1) or (VAR7 > VAR8 +1)] . Each
case in all 14 affected files was uniquely
identified with VAR1, VAR2, and VAR3.

• Removed affected records from each of the
14 affected files. Macro %DELOBS
processed records in the order as they were
received file by file. An ARRAY statement
was used to keep all values of said three
variables and in the case of matching all
three values, the record was removed.
Immediately after a match was found a DO
loop was exited. The RETURN statement
prevented writing of that record to the output
text file. It took advantage of processing data
in RAM and reading of records sequentially.
Macro variable &PRE and &SUF (prefix and
suffix) allowed changes of INPUT to PUT
statement and determined the physical
destination of input and output files.

• Produced reports for Client.

Here is the main part of the program.

%macro DELOBS (filnam, dat);
data REPORT (keep=tablXXX var2 var3 var4 ind)
 FILECNT (keep=tablXXX var2) ;
 length tablXXX $ 8;
 array arr(200,3) 3 arr1 – arr600 ;
 retain tablXXX ' ' ind arr ;
tablXXX = "&filnam" ;

%let pre=IN ; /* Input */
%let suf=1 ;
%&dat ;
 if _N_ = 1 then do;
 do RecID = 1 to maxN;
 set DeletInd Nobs = maxN point=RecID;
 arr(RecID,1) = var11 ;
 arr(RecID,2) = var21 ;
 arr(RecID,3) = var31 ;
 end;
 end;
 do RecID = 1 to maxN;
 if arr(RecID,1) = var1 and
 arr(RecID,2) = var2 and
 arr(RecID,3) = var3 then do;
 ind = 1;
 output report;
 return;
 end;
 end;
%let pre=; /* Output */
%let suf=;
%&dat;
run;

proc freq data=FILECNT;
 tables siteid*tablXXX / noprint
 out=FILESUM (keep=var2 tablXXX count
 rename=(count=var3tot));
run;

proc append base = rlib.FILESUM data=FILESUM;
run;

proc datasets;
 delete FILECNT;
run;
proc append base = rlib.REPORTA data=REPORT;
run;
%mend DELOBS;

* Application of DELOBS on all affected files;
% DELOBS (FILE001, fl01)
% DELOBS (FILE002, fl02)
% DELOBS (FILE003, fl03)
% DELOBS (FILE004, fl04)
% DELOBS (FILE005, fl05)
% DELOBS (FILE006, fl06)
% DELOBS (FILE007, fl07)
% DELOBS (FILE008, fl08)
% DELOBS (FILE009, fl09)
% DELOBS (FILE010, fl10)
% DELOBS (FILE011, fl11)
% DELOBS (FILE012, fl12)
% DELOBS (FILE013, fl13)
% DELOBS (FILE014, fl14)

The author produced some quantitative measures
about the data processing described above. The
records were from 96 characters to 963 characters

in length, and between 38,000 and 2,200,000
records were transferred (read/write). The estimated
minimum number of transferred characters each
week was over 2.3 GB in less than 2 hours (real
time).

Conclusion
In solving this problem I did not want to apply so
called “brute force”, by which I mean using a more
powerful PC (with faster microprocessor, more RAM,
bigger and faster hard drive). I tried to solve the
problem with the available resources. The advantage
of using array processing over merging data sets
was that processing data in RAM is 3 to 4 levels of
magnitude faster than accessing data on the hard
drive. The usual number of inconsistent cases in the
DELETIND SAS data set was between 40 and 60.
This means in average the program needed to check
20 – 30 array cells to get the answer if case was
removed and all 40 to 60 array cells if the case was
kept.

Further Research
One more improvement can be the use of formatted
values for three key variables instead of an array
sequential search. Binary search, which is standard
for formatted values, would drop the number of array
searches from 60 (max number) to a maximum of 6
searches (under assumption that the number of
observations in DELETIND is 63 or less). I believe it
could improve performance.

Acknowledgements
Thanks to Daniel Pratt, Mani Medarametla, and
Laura Burns from RTI International for their
suggestions while preparing this paper.

Author Contact Information
Milorad Stojanovic
RTI International
Research Computing Division
800 Park
RTP, NC 27709
(919) 541-7376 milorad@rti.org

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

